The most advanced bots are powered by artificial intelligence, helping it to understand complex requests, personalize responses, and improve interactions over time. This technology is still in its infancy, so most bots follow a set of rules programmed by a human via a bot-building platform. It's as simple as ordering a list of if-then statements and writing canned responses, often without needing to know a line of code.
With natural language processing (NLP), a bot can understand what a human is asking. The computer translates the natural language of a question into its own artificial language. It breaks down human inputs into coded units and uses algorithms to determine what is most likely being asked of it. From there, it determines the answer. Then, with natural language generation (NLG), it creates a response. NLG software allows the bot to construct and provide a response in the natural language format.
Through Knowledge Graph, Google search has already become amazingly good at understanding the context and meaning of your queries, and it is getting better at natural language queries. With its massive scale in data and years of working at the very hard problems of natural language processing, the company has a clear path to making Allo’s conversational commerce capabilities second to none.

If you ask any marketing expert, customer engagement is simply about talking to the customer and reeling them in when the time’s right. This means being there for the user whenever they look for you throughout their lifecycle and therein lies the trick: How can you be sure you’re there at all times and especially when it matters most to the customer?
Operator calls itself a “request network” aiming to “unlock the 90% of commerce that’s not on the internet.” The Operator app, developed by Uber co-founder Garrett Camp, connects you with a network of “operators” who act like concierges who can execute any shopping-related request. You can order concert tickets, get gift ideas, or even get interior design recommendations for new furniture. Operator seems to be positioning itself towards “high consideration” purchases, bigger ticket purchases requiring more research and expertise, where its operators can add significant value to a transaction.
World Environment Day 2019 is focusing on climate change, and more specifically air pollution, what causes it, and importantly, what we can do about it. Through a range of blogs and an in-depth look at current vocabulary on the topic, we highlight some of the words you may need to know to be able to take part in arguably one of the most important discussions of our time.
Each student learns and absorbs things at a different pace and requires a specific methodology of teaching. Consequently, one of the most powerful advantages of getting educated by a chatbot is its flexibility and ability to adapt to specific needs and requirements of a particular student. Chatbots can be used in a wide spectrum, be it teaching people how to build websites, learn a new language, or something more generic like teach children Math. Chatbots are capable of adapting to the speed at which each student is comfortable - without being too pushy and overwhelming.

Typically, companies applied a passive engagement method with consumers. In other words, customer support only responds to complaining consumers – but never initiate any conversations or look for feedback. While this method was fine for a long while, it doesn’t work anymore with millennials. Users want to communicate with attentive brands who have a 24/7 support system and they won’t settle for anything less.
Once you’ve determined these factors, you can develop the front-end web app or microservice. You might decide to integrate a chatbot into a customer support website where a customer clicks on an icon that immediately triggers a chatbot conversation. You could also integrate a chatbot into another communication channel, whether it’s Slack or Facebook Messenger. Building a “Slackbot,” for example, gives your users another way to get help or find information within a familiar interface.
Automation will be central to the next phase of digital transformation, driving new levels of customer value such as faster delivery of products, higher quality and dependability, deeper personalization, and greater convenience. Last year, Forrester predicted that automation would reach a tipping point — altering the workforce, augmenting employees, and driving new levels of customer value. Since then, […]
In 1950, Alan Turing's famous article "Computing Machinery and Intelligence" was published,[7] which proposed what is now called the Turing test as a criterion of intelligence. This criterion depends on the ability of a computer program to impersonate a human in a real-time written conversation with a human judge, sufficiently well that the judge is unable to distinguish reliably—on the basis of the conversational content alone—between the program and a real human. The notoriety of Turing's proposed test stimulated great interest in Joseph Weizenbaum's program ELIZA, published in 1966, which seemed to be able to fool users into believing that they were conversing with a real human. However Weizenbaum himself did not claim that ELIZA was genuinely intelligent, and the introduction to his paper presented it more as a debunking exercise:
×