Amazon’s Echo device has been a surprise hit, reaching over 3M units sold in less than 18 months. Although part of this success can be attributed to the massive awareness-building power of the Amazon.com homepage, the device receives positive reviews from customers and experts alike, and has even prompted Google to develop its own version of the same device, Google Home.


Once the chatbot is ready and is live interacting with customers, smart feedback loops can be implemented. During the conversation when customers ask a question, chatbot smartly give them a couple of answers by providing different options like “Did you mean a,b or c”. That way customers themselves matches the questions with actual possible intents and that information can be used to retrain the machine learning model, hence improving the chatbot’s accuracy.
The chatbot uses keywords that users type in the chat line and guesses what they may be looking for. For example, if you own a restaurant that has vegan options on the menu, you might program the word “vegan” into the bot. Then when users type in that word, the return message will include vegan options from the menu or point out the menu section that features these dishes.
These are hardly ideas of Hollywood’s science fiction. Even when the Starbucks bot can sound like Scarlett Johansson’s Samantha, the public will be unimpressed — we would prefer a real human interaction. Yet the public won’t have a choice; efficient task-oriented dialog agents will be the automatic vending machines and airport check-in kiosks of the near future.
There are various search engines for bots, such as Chatbottle, Botlist and Thereisabotforthat, for example, helping developers to inform users about the launch of new talkbots. These sites also provide a ranking of bots by various parameters: the number of votes, user statistics, platforms, categories (travel, productivity, social interaction, e-commerce, entertainment, news, etc.). They feature more than three and a half thousand bots for Facebook Messenger, Slack, Skype and Kik.
1. AI-based: these ones really rely on training and are fairly complicated to set up. You train the chatbot to understand specific topics and tell your users which topics your chatbot can engage with. AI chatbots require all sorts of fall back and intent training. For example, let’s say you built a doctor chatbot (off the top of my head because I am working on one at the moment), it would have to understand that “i have a headache” and “got a headache” and “my head hurts” are the same intent. The user is free to engage and the chatbot has to pick things up.
In 1950, Alan Turing's famous article "Computing Machinery and Intelligence" was published,[7] which proposed what is now called the Turing test as a criterion of intelligence. This criterion depends on the ability of a computer program to impersonate a human in a real-time written conversation with a human judge, sufficiently well that the judge is unable to distinguish reliably—on the basis of the conversational content alone—between the program and a real human. The notoriety of Turing's proposed test stimulated great interest in Joseph Weizenbaum's program ELIZA, published in 1966, which seemed to be able to fool users into believing that they were conversing with a real human. However Weizenbaum himself did not claim that ELIZA was genuinely intelligent, and the introduction to his paper presented it more as a debunking exercise:
×