Canadian and US insurers have a lot on their plates this year.  They’re not just grappling with extreme weather, substantial underwriting losses from all those motor vehicle claims, but also rising customer expectations and an onslaught of fintech disruptors.  These disruptors are spurring lots of activity in insurance digital labs, insurance venture capital arms, and […]
Aside from being practical and time-convenient, chatbots guarantee a huge reduction in support costs. According to IBM, the influence of chatbots on CRM is staggering.  They provide a 99 percent improvement rate in response times, therefore, cutting resolution from 38 hours to five minutes. Also, they caused a massive drop in cost per query from $15-$200 (human agents) to $1 (virtual agents). Finally, virtual agents can take up an average of 30,000+ consumers per month.
Being an early adopter of a new channel can provide enormous benefits, but that comes with equally high risks. This is amplified within marketplaces like Amazon. Early adopters within Amazon's marketplace were able to focus on building a solid base of reviews for their products - a primary ranking signal - which meant that they'd create huge barriers to entry for competitors (namely because they were always showing up in the search results before them).
A chatbot that functions through machine learning has an artificial neural network inspired by the neural nodes of the human brain. The bot is programmed to self-learn as it is introduced to new dialogues and words. In effect, as a chatbot receives new voice or textual dialogues, the number of inquiries that it can reply and the accuracy of each response it gives increases. Facebook has a machine learning chatbot that creates a platform for companies to interact with their consumers through the Facebook Messenger application. Using the Messenger bot, users can buy shoes from Spring, order a ride from Uber, and have election conversations with the New York Times which used the Messenger bot to cover the 2016 presidential election between Hilary Clinton and Donald Trump. If a user asked the New York Times through his/her app a question like “What’s new today?” or “What do the polls say?” the bot would reply to the request.

Interface designers have come to appreciate that humans' readiness to interpret computer output as genuinely conversational—even when it is actually based on rather simple pattern-matching—can be exploited for useful purposes. Most people prefer to engage with programs that are human-like, and this gives chatbot-style techniques a potentially useful role in interactive systems that need to elicit information from users, as long as that information is relatively straightforward and falls into predictable categories. Thus, for example, online help systems can usefully employ chatbot techniques to identify the area of help that users require, potentially providing a "friendlier" interface than a more formal search or menu system. This sort of usage holds the prospect of moving chatbot technology from Weizenbaum's "shelf ... reserved for curios" to that marked "genuinely useful computational methods".